Solutions Resit Exam - Partial Differential Equations

10 May 2015, 18:30-21:30, Aletta Jacobshal 01
Duration: 3 hours

Question 1 (15 points)

Consider the equation

$$
\begin{equation*}
y u_{x}-u_{y}=0, \tag{1}
\end{equation*}
$$

where $u=u(x, y)$.
a. ($7 \mathbf{p t}$) Find the general solution of Eq. (1).
b. ($3 \mathbf{p t}$) Find the solution of Eq. (1) with the auxiliary condition $u(x, 0)=2 \sin x$.

Consider now the equation

$$
\begin{equation*}
y u_{x}-u_{y}=u^{2} \tag{2}
\end{equation*}
$$

c. (5 pt) Find the general solution of Eq. (2) without any auxiliary conditions, using the substitution $u(x, y)=\frac{1}{y-w(x, y)}$.

Solution

a. We solve the equation for the characteristic curves

$$
\frac{d y}{d x}=\frac{-1}{y}
$$

which gives

$$
\frac{y^{2}}{2}=-x+C_{1}
$$

where C_{1} is the constant of integration. Solving for $C=2 C_{1}$ we get

$$
C=y^{2}+2 x
$$

Since $y^{2}+2 x$ is constant along the characteristic curves we conclude that the solution of the problem has the general form

$$
u(x, y)=f\left(y^{2}+2 x\right)
$$

where f is an arbitrary function of one variable.
b. Applying the general solution we find

$$
u(x, 0)=f(2 x)=2 \sin x
$$

Therefore $f(s)=2 \sin (s / 2)$, and the solution we are after is

$$
u(x, y)=2 \sin \left(\frac{y^{2}+2 x}{2}\right)
$$

c. We have

$$
u_{x}=\frac{1}{(y-w)^{2}} w_{x}, \quad u_{y}=\frac{1}{(y-w)^{2}}\left(-1+w_{y}\right) .
$$

Then Eq. (2) gives

$$
\frac{1}{(y-w)^{2}}\left(y w_{x}+1-w_{y}\right)=\frac{1}{(y-w)^{2}},
$$

which can be simplified, to

$$
y w_{x}-w_{y}=0,
$$

which is exactly Eq. (1), and for which we know that the general solution is

$$
w=f\left(y^{2}+2 x\right) .
$$

Therefore, the general solution for Eq. (2) is

$$
u=\frac{1}{y-f\left(y^{2}+2 x\right)},
$$

with f an arbitrary function.

Question 2 (15 points)

Consider the equation

$$
\begin{equation*}
u_{x x}-2 u_{x y}-u_{y y}=0, \tag{3}
\end{equation*}
$$

where $x, y \in \mathbb{R}$.
a. ($\mathbf{3} \mathbf{~ p t}$) What is the type (elliptic / hyperbolic / parabolic) of Eq. (3)? Explain your answer.
b. (8 pt) Find a linear transformation $(x, y) \rightarrow(s, t)$ that reduces Eq. (3) to one of the standard forms $u_{s s}+u_{t t}=0, u_{s s}-u_{t t}=0$, or $u_{s s}=0$.
c. (4 pt) Find the general solution of Eq. (3).

Solution

a. We have $a_{11}=1, a_{22}=-1$, and $a_{12}=-1$. Therefore

$$
a_{12}^{2}>a_{11} a_{22},
$$

and Eq. (3) is hyperbolic.
b. Since the equation is hyperbolic the standard form is $u_{s s}-u_{t t}=0$, or $\left(\partial_{s}^{2}-\partial_{t}^{2}\right) u=0$. Write the original equation as

$$
\mathcal{L} u=0,
$$

where

$$
\mathcal{L}=\partial_{x}^{2}-2 \partial_{x} \partial_{y}-\partial_{y}^{2}
$$

Then

$$
\mathcal{L}=\left(\partial_{x}-\partial_{y}\right)^{2}-2 \partial_{y}^{2},
$$

so we can set $\partial_{s}=\partial_{x}-\partial_{y}$ and $\partial_{t}=\sqrt{2} \partial_{y}$, that is,

$$
\binom{\partial_{s}}{\partial_{t}}=\left(\begin{array}{cc}
1 & -1 \\
0 & \sqrt{2}
\end{array}\right)\binom{\partial_{x}}{\partial_{y}} .
$$

The corresponding coordinate transformation is

$$
\binom{x}{y}=\left(\begin{array}{cc}
1 & 0 \\
-1 & \sqrt{2}
\end{array}\right)\binom{s}{t},
$$

or

$$
x=s, \quad y=\sqrt{2} t-s
$$

which can be inverted to give

$$
s=x, \quad t=(x+y) / \sqrt{2} .
$$

c. We have transformed Eq. (3) to $u_{s s}-u_{t t}=0$ which is the wave equation (with $c=1$). The latter has the general solution

$$
u(s, t)=f(s+t)+g(s-t)
$$

This means that the original equation has the general solution

$$
u(x, y)=f\left(\frac{(\sqrt{2}+1) x+y}{\sqrt{2}}\right)+g\left(\frac{(\sqrt{2}-1) x-y}{\sqrt{2}}\right) .
$$

Question 3 (20 points)

Consider the Laplace equation $\Delta u=0$ in the domain

$$
R=\{(x, y): 0 \leq x \leq \pi, 0 \leq y \leq \pi\}
$$

with the boundary conditions $u(x, \pi)=\sin x+\frac{1}{3} \sin (3 x)$, and $u(x, 0)=u(0, y)=u(\pi, y)=0$.
a. (5 pt) Separate the Laplace equation in Cartesian coordinates x, y using the ansatz $u(x, y)=X(x) Y(y)$ and write two ordinary differential equations, one for X and one for Y.
b. ($7 \mathbf{p t}$) Solve the eigenvalue equation for X for the given boundary conditions (find eigenvalues and eigenfunctions). Consider known that the problem has no complex eigenvalues but check for positive, negative, or zero eigenvalues.
c. $(3 \mathbf{p t})$ Solve the differential equation for Y.
d. (5 pt) Write the general solution $u(x, y)$ for boundary conditions $u(x, \pi)=h(x), u(x, 0)=$ $u(0, y)=u(\pi, y)=0$ where $h(x)$ is an arbitrary function and then give the solution for the specific boundary conditions in this problem.

Solution

a. Substituting $u(x, y)=X(x) Y(y)$ into the equation

$$
\Delta u=u_{x x}+u_{y y}=0
$$

we get

$$
X^{\prime \prime} Y+X Y^{\prime \prime}=0
$$

Then

$$
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0
$$

and separating the parts that depend on x from those that depend on y we find

$$
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y}=-\lambda
$$

where λ is a constant. Then we have the two equations

$$
X^{\prime \prime}+\lambda X=0, \quad Y^{\prime \prime}-\lambda Y=0
$$

b. The given boundary conditions imply

$$
X(0)=X(\pi)=0 .
$$

For positive eigenvalues $\lambda=\beta^{2}$ we have the solutions

$$
X(x)=A \cos (\beta x)+B \sin (\beta x)
$$

From here

$$
X(0)=A=0, \quad X(\pi)=A \cos (\beta \pi)+B \sin (\beta \pi)=0
$$

Then

$$
A=0, \quad B \sin (\beta \pi)=0
$$

and finally

$$
\beta_{n}=n, n=1,2,3, \ldots
$$

For $\lambda=0$ the solution is

$$
X(x)=A x+B
$$

so

$$
X(0)=B=0, \quad X(\pi)=A \pi+B=0
$$

giving the trivial solution $A=B=0$ which is rejected.
For $\lambda=-\gamma^{2}<0$ we have

$$
X(x)=A e^{\gamma x}+B e^{-\gamma x}
$$

Then

$$
X(0)=A+B=0, \quad X(\pi)=A e^{\gamma \pi}+B e^{-\gamma \pi}=0,
$$

so

$$
B=-A, \quad A e^{-\gamma \pi}\left(e^{2 \gamma \pi}-1\right)=0
$$

The last equation implies that either $\gamma=0$ (so $\lambda=0$ but we assumed $\lambda<0$) or $A=B=0$ giving the trivial solution so we should also reject the case of negative eigenvalues. Finally, the eigenvalues are

$$
\lambda_{n}=\beta_{n}^{2}=n^{2}
$$

and the eigenfunctions

$$
X_{n}(x)=\sin (n x)
$$

c. The differential equation for Y is $Y^{\prime \prime}-n^{2} Y=0$, with $n=1,2,3, \ldots$ Therefore

$$
Y_{n}(y)=A_{n} e^{n y}+B_{n} e^{-n y}
$$

d. The general solution is

$$
u(x, y)=\sum_{n=1}^{\infty} X_{n}(x) Y_{n}(y)=\sum_{n=1}^{\infty}\left(A_{n} e^{n y}+B_{n} e^{-n y}\right) \sin (n x)
$$

For $y=0$ we have

$$
u(x, 0)=\sum_{n=1}^{\infty}\left(A_{n}+B_{n}\right) \sin (n x)=0
$$

So

$$
A_{n}+B_{n}=0
$$

since these are the coefficients of the Fourier sine series for 0 . For $y=\pi$ we have

$$
u(x, \pi)=\sum_{n=1}^{\infty} A_{n}\left(e^{n \pi}-e^{-n \pi}\right) \sin (n x)=h(x)
$$

$$
A_{n}=\frac{2}{\pi\left(e^{n \pi}-e^{-n \pi}\right)} \int_{0}^{\pi} h(x) \sin (n x) d x
$$

In the specific case here we have

$$
h(x)=\sin x+\frac{1}{3} \sin (3 x)=\sum_{n=1}^{\infty} A_{n}\left(e^{n \pi}-e^{-n \pi}\right) \sin (n x)
$$

and comparing the two expressions we see that $A_{1}=\left[e^{\pi}-e^{-\pi}\right]^{-1}, A_{3}=\left[3\left(e^{3 \pi}-e^{-3 \pi}\right)\right]^{-1}$, $A_{n}=0$ in all other cases. Therefore the solution for the specific boundary conditions is

$$
u(x, y)=\frac{e^{y}-e^{-y}}{e^{\pi}-e^{-\pi}} \sin (x)+\frac{1}{3} \frac{e^{3 y}-e^{-3 y}}{e^{3 \pi}-e^{-3 \pi}} \sin (3 x)
$$

Question 4 (10 points)

Suppose that u is a harmonic function in the closed disk $D=\{r \leq 1\}$ and that

$$
u=3 \sin (2 \theta)-1 \text { for } r=1 .
$$

a. ($5 \mathbf{p t}$) What are the maximum and minimum values of u in D ?
b. (5 pt) Find the value of u at the origin.

Solution

a. Since u is harmonic it attains its maximum and minimum values at the boundary. At the boundary we have $u=3 \sin (2 \theta)-1$. Since $-1 \leq \sin (2 \theta) \leq 1$ and the values ± 1 are attained for $\theta \in[0,2 \pi]$ we conclude that $-4 \leq u \leq 2$ at the boundary and u attains the maximum value 2 and the minimum value -4 at some point on the boundary. Therefore these are also the respective maximum and minimum values on D.
b. Poisson's formula is

$$
u(r, \theta)=\frac{a^{2}-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{h(\phi)}{a^{2}-2 a r \cos (\theta-\phi)+r^{2}} d \phi
$$

Applying Poisson's formula for $r=0, a=1, h(\phi)=3 \sin (2 \phi)-1$ gives

$$
u(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi}(3 \sin (2 \phi)-1) d \phi=-1 .
$$

Question 5 (15 points)

Consider the function

$$
f(x)=x, \quad \text { with } \quad x \in[0, \pi],
$$

and its Fourier sine series.
a. (2 pt) Does the Fourier sine series converge in the L^{2} sense? Explain your answer.
b. ($\mathbf{3} \mathbf{~ p t}$) What is the pointwise limit of the Fourier sine series for arbitrary $x \in[-\pi, \pi]$?
c. ($\mathbf{3} \mathbf{~ p t}$) How does the Gibbs phenomenon manifest itself in the Fourier sine series? That is, at which point(s) in $[0, \pi]$ the Gibbs phenomenon appears and approximately how much is the "overshoot" there?
d. $(7 \mathbf{p t})$ Compute the coefficients of the Fourier sine series for $f(x)$.

Solution

a. The function f is bounded in $[0, \pi]$, therefore

$$
\|f\|^{2}=\int_{0}^{\pi} f(x)^{2} d x<+\infty
$$

This means that the Fourier sine series converges in the L^{2} sense.
b. The pointwise limit of the Fourier sine series can be deduced from the odd-periodic extension $f_{\text {ext }}(x)$ of $f(x)$ from $[0, \pi]$ to \mathbb{R}. This is constructed by first considering the extension of f to an odd function defined in $[-\pi, \pi]$ and then the further periodic extension to \mathbb{R}. This extension $f_{\text {ext }}(x)$ is discontinuous at $x=(2 k+1) \pi, k \in \mathbb{Z}$ and $f_{\text {ext }}\left((2 k+1) \pi^{+}\right)=-\pi$ while $f_{\text {ext }}\left((2 k+1) \pi^{-}\right)=\pi$. Therefore the Fourier sine series converges pointwise at $x=\pi$ and $x=-\pi$ to $\frac{1}{2}[-\pi+\pi]=0$. At $x \in(-\pi, \pi), f_{\text {ext }}(x)$ is continuous (and equal to $\left.x\right)$ so the Fourier series converges pointwise to x.
c. The odd-periodic extension $f_{\text {ext }}$ of f is discontinuous at $x=(2 k+1) \pi, k \in \mathbb{Z}$ so the only point in $[0, \pi]$ where $f_{\text {ext }}$ is discontinuous is $x=\pi$. The jump of $f_{\text {ext }}$ at $x=\pi$ is $f_{\text {odd }}\left(\pi^{+}\right)-f_{\text {odd }}\left(\pi^{-}\right)=-2 \pi$. Therefore, for $x \in[0, \pi]$ the Gibbs phenomenon appears at $x=\pi$ and the overshoot is approximately $0.09 \cdot(2 \pi) \simeq 0.56$.
d. We have

$$
A_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \sin (n x) d x=\frac{2}{\pi} \int_{0}^{\pi} x\left(-\frac{1}{n} \cos (n x)\right)^{\prime} d x
$$

Integration by parts gives

$$
A_{n}=-\frac{2}{n \pi}[x \cos (n x)]_{0}^{\pi}+\frac{2}{n \pi} \int_{0}^{\pi} \cos (n x) d x=-\frac{2}{n \pi}\left[x \cos (n x)-\frac{\sin (n x)}{n}\right]_{0}^{\pi}
$$

Then

$$
A_{n}=-(-1)^{n} \frac{2}{n} .
$$

Question 6 (15 points)

Consider the diffusion equation $u_{t}=u_{x x}$ in $\{0<x<1,0<t<\infty\}$ with $u(0, t)=u(1, t)=0$ and $u(x, 0)=4 x(1-x)$.
a. ($5 \mathbf{p t}$) Show that $0<u(x, t)<1$ for all $t>0$ and $0<x<1$.
b. (4 pt) Define the energy function $E(t)=\int_{0}^{1} u(x, t)^{2} d x$ and show that $E(t)$ is a decreasing function of t, that is, $d E / d t \leq 0$.
c. (6 pt) Show that $u(x, t)=u(1-x, t)$ for all $t \geq 0$ and $0 \leq x \leq 1$.
[Hint: define $w(x, t)=u(x, t)-u(1-x, t)$]

Solution

a. The strong maximum principle (as stated in the book) says that the solution u of the diffusion equation in a rectangle $R=[0,1] \times[0, T]$ where $T>0$ attains its maximum only at the part of the boundary given by $B=\{x=0$ or $x=1$ or $t=0\}$ (unless the solution is constant). Given that the solution is not constant (since $u(x, 0)=4 x(1-x)$) we conclude that for any $(x, t) \in \operatorname{int}(R)$ we have

$$
\min _{(x, t) \in B} u(x, t)<u(x, t)<\max _{(x, t) \in B} u(x, t) .
$$

But for any $T>0$ we have $\max _{(x, t) \in B} u(x, t)=1$ and $\min _{(x, t) \in B} u(x, t)=0$. Therefore,

$$
0<u(x, t)<1
$$

for any $0<x<1$ and $t>0$.
b. We compute

$$
\frac{d E}{d t}=\int_{0}^{1} \frac{\partial}{\partial t}\left(u^{2}\right) d x=2 \int_{0}^{1} u u_{t} d x
$$

Using the diffusion equation we rewrite the last expression as

$$
\frac{d E}{d t}=2 \int_{0}^{1} u u_{x x} d x
$$

and using integration by parts we get

$$
\frac{d E}{d t}=2\left[\left.\left(u u_{x}\right)\right|_{x=1}-\left.\left(u u_{x}\right)\right|_{x=0}\right]-2 \int_{0}^{1}\left(u_{x}\right)^{2} d x
$$

Since $u(0, t)=u(1, t)=0$ we have

$$
\frac{d E}{d t}=-2 \int_{0}^{1}\left(u_{x}\right)^{2} d x \leq 0
$$

c. Define $w(x, t)=u(x, t)-u(1-x, t)$. Then

$$
\begin{gathered}
w_{t}(x, t)=u_{t}(x, t)-u(1-x, t) \\
w_{x}(x, t)=u_{x}(x, t)+u_{x}(1-x, t)
\end{gathered}
$$

and

$$
w_{x x}(x, t)=u_{x x}(x, t)-u_{x x}(1-x, t)=u_{t}(x, t)-u_{t}(1-x, t),
$$

where we used that u is a solution of the diffusion equation $u_{t}=u_{x x}$. Therefore

$$
w_{t}=w_{x x}
$$

Furthermore,

$$
w(0, t)=u(0, t)-u(1, t)=0, \quad w(1, t)=u(1, t)-u(0, t)=0
$$

and

$$
w(x, 0)=u(x, 0)-u(1-x, 0)=4 x(1-x)-4(1-x)(1-(1-x))=0
$$

Therefore, w satisfies the diffusion equation while it is zero at the boundary. This means that $w=0$ for all $0 \leq x \leq 1$ and $t \geq 0$. To be more explicit one can say that $w=0$ is an obvious solution and then use uniqueness, or use the maximum principle to obtain that the maximum of w in the domain is 0 and the minimum is also 0 so $w=0$ everywhere in the domain. This means that $u(x, t)=u(1-x, t)$ for all $t \geq 0$ and $0 \leq x \leq 1$.

