
Solutions Resit Exam — Partial Differential Equations

10 May 2015, 18:30-21:30, Aletta Jacobshal 01

Duration: 3 hours

Question 1 (15 points)

Consider the equation

yux − uy = 0, (1)

where u = u(x, y).

a. (7 pt) Find the general solution of Eq. (1).

b. (3 pt) Find the solution of Eq. (1) with the auxiliary condition u(x, 0) = 2 sinx.

Consider now the equation

yux − uy = u2. (2)

c. (5 pt) Find the general solution of Eq. (2) without any auxiliary conditions, using the
substitution u(x, y) = 1

y−w(x,y) .

Solution

a. We solve the equation for the characteristic curves

dy

dx
=
−1

y
,

which gives

y2

2
= −x+ C1,

where C1 is the constant of integration. Solving for C = 2C1 we get

C = y2 + 2x.

Since y2 + 2x is constant along the characteristic curves we conclude that the solution of
the problem has the general form

u(x, y) = f(y2 + 2x),

where f is an arbitrary function of one variable.

b. Applying the general solution we find

u(x, 0) = f(2x) = 2 sinx.

Therefore f(s) = 2 sin(s/2), and the solution we are after is

u(x, y) = 2 sin
(y2 + 2x

2

)
.
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c. We have

ux =
1

(y − w)2
wx, uy =

1

(y − w)2
(−1 + wy).

Then Eq. (2) gives

1

(y − w)2
(ywx + 1− wy) =

1

(y − w)2
,

which can be simplified, to

ywx − wy = 0,

which is exactly Eq. (1), and for which we know that the general solution is

w = f(y2 + 2x).

Therefore, the general solution for Eq. (2) is

u =
1

y − f(y2 + 2x)
,

with f an arbitrary function.
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Question 2 (15 points)

Consider the equation

uxx − 2uxy − uyy = 0, (3)

where x, y ∈ R.

a. (3 pt) What is the type (elliptic / hyperbolic / parabolic) of Eq. (3)? Explain your
answer.

b. (8 pt) Find a linear transformation (x, y) → (s, t) that reduces Eq. (3) to one of the
standard forms uss + utt = 0, uss − utt = 0, or uss = 0.

c. (4 pt) Find the general solution of Eq. (3).

Solution

a. We have a11 = 1, a22 = −1, and a12 = −1. Therefore

a212 > a11a22,

and Eq. (3) is hyperbolic.

b. Since the equation is hyperbolic the standard form is uss − utt = 0, or (∂2s − ∂2t )u = 0.
Write the original equation as

Lu = 0,

where

L = ∂2x − 2∂x∂y − ∂2y .

Then

L = (∂x − ∂y)2 − 2∂2y ,

so we can set ∂s = ∂x − ∂y and ∂t =
√

2∂y, that is,(
∂s
∂t

)
=

(
1 −1

0
√

2

)(
∂x
∂y

)
.

The corresponding coordinate transformation is(
x
y

)
=

(
1 0

−1
√

2

)(
s
t

)
,

or

x = s, y =
√

2t− s,

which can be inverted to give

s = x, t = (x+ y)/
√

2.

c. We have transformed Eq. (3) to uss − utt = 0 which is the wave equation (with c = 1).
The latter has the general solution

u(s, t) = f(s+ t) + g(s− t).

This means that the original equation has the general solution

u(x, y) = f
((
√

2 + 1)x+ y√
2

)
+ g
((
√

2− 1)x− y√
2

)
.
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Question 3 (20 points)

Consider the Laplace equation ∆u = 0 in the domain

R = {(x, y) : 0 ≤ x ≤ π, 0 ≤ y ≤ π},

with the boundary conditions u(x, π) = sinx+ 1
3 sin(3x), and u(x, 0) = u(0, y) = u(π, y) = 0.

a. (5 pt) Separate the Laplace equation in Cartesian coordinates x, y using the ansatz
u(x, y) = X(x)Y (y) and write two ordinary differential equations, one for X and one for
Y .

b. (7 pt) Solve the eigenvalue equation for X for the given boundary conditions (find eigen-
values and eigenfunctions). Consider known that the problem has no complex eigenvalues
but check for positive, negative, or zero eigenvalues.

c. (3 pt) Solve the differential equation for Y .

d. (5 pt) Write the general solution u(x, y) for boundary conditions u(x, π) = h(x), u(x, 0) =
u(0, y) = u(π, y) = 0 where h(x) is an arbitrary function and then give the solution for
the specific boundary conditions in this problem.

Solution

a. Substituting u(x, y) = X(x)Y (y) into the equation

∆u = uxx + uyy = 0

we get

X ′′Y +XY ′′ = 0.

Then

X ′′

X
+
Y ′′

Y
= 0

and separating the parts that depend on x from those that depend on y we find

X ′′

X
= −Y

′′

Y
= −λ,

where λ is a constant. Then we have the two equations

X ′′ + λX = 0, Y ′′ − λY = 0.

b. The given boundary conditions imply

X(0) = X(π) = 0.

For positive eigenvalues λ = β2 we have the solutions

X(x) = A cos(βx) +B sin(βx).

From here

X(0) = A = 0, X(π) = A cos(βπ) +B sin(βπ) = 0.

Then

A = 0, B sin(βπ) = 0,
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and finally

βn = n, n = 1, 2, 3, . . .

For λ = 0 the solution is

X(x) = Ax+B

so

X(0) = B = 0, X(π) = Aπ +B = 0

giving the trivial solution A = B = 0 which is rejected.
For λ = −γ2 < 0 we have

X(x) = Aeγx +Be−γx.

Then

X(0) = A+B = 0, X(π) = Aeγπ +Be−γπ = 0,

so

B = −A, Ae−γπ(e2γπ − 1) = 0.

The last equation implies that either γ = 0 (so λ = 0 but we assumed λ < 0) or A = B = 0
giving the trivial solution so we should also reject the case of negative eigenvalues.
Finally, the eigenvalues are

λn = β2n = n2,

and the eigenfunctions

Xn(x) = sin(nx).

c. The differential equation for Y is Y ′′ − n2Y = 0, with n = 1, 2, 3, . . . . Therefore

Yn(y) = Ane
ny +Bne

−ny.

d. The general solution is

u(x, y) =
∞∑
n=1

Xn(x)Yn(y) =
∞∑
n=1

(Ane
ny +Bne

−ny) sin(nx).

For y = 0 we have

u(x, 0) =
∞∑
n=1

(An +Bn) sin(nx) = 0

so

An +Bn = 0,

since these are the coefficients of the Fourier sine series for 0. For y = π we have

u(x, π) =

∞∑
n=1

An(enπ − e−nπ) sin(nx) = h(x)
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so

An =
2

π(enπ − e−nπ)

∫ π

0
h(x) sin(nx) dx.

In the specific case here we have

h(x) = sinx+
1

3
sin(3x) =

∞∑
n=1

An(enπ − e−nπ) sin(nx),

and comparing the two expressions we see that A1 = [eπ−e−π]−1, A3 = [3(e3π−e−3π)]−1,
An = 0 in all other cases. Therefore the solution for the specific boundary conditions is

u(x, y) =
ey − e−y

eπ − e−π
sin(x) +

1

3

e3y − e−3y

e3π − e−3π
sin(3x).
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Question 4 (10 points)

Suppose that u is a harmonic function in the closed disk D = {r ≤ 1} and that

u = 3 sin(2θ)− 1 for r = 1.

a. (5 pt) What are the maximum and minimum values of u in D?

b. (5 pt) Find the value of u at the origin.

Solution

a. Since u is harmonic it attains its maximum and minimum values at the boundary. At
the boundary we have u = 3 sin(2θ) − 1. Since −1 ≤ sin(2θ) ≤ 1 and the values ±1 are
attained for θ ∈ [0, 2π] we conclude that −4 ≤ u ≤ 2 at the boundary and u attains the
maximum value 2 and the minimum value −4 at some point on the boundary. Therefore
these are also the respective maximum and minimum values on D.

b. Poisson’s formula is

u(r, θ) =
a2 − r2

2π

∫ 2π

0

h(φ)

a2 − 2ar cos(θ − φ) + r2
dφ.

Applying Poisson’s formula for r = 0, a = 1, h(φ) = 3 sin(2φ)− 1 gives

u(0) =
1

2π

∫ 2π

0
(3 sin(2φ)− 1) dφ = −1.
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Question 5 (15 points)

Consider the function

f(x) = x, with x ∈ [0, π],

and its Fourier sine series.

a. (2 pt) Does the Fourier sine series converge in the L2 sense? Explain your answer.

b. (3 pt) What is the pointwise limit of the Fourier sine series for arbitrary x ∈ [−π, π]?

c. (3 pt) How does the Gibbs phenomenon manifest itself in the Fourier sine series? That is,
at which point(s) in [0, π] the Gibbs phenomenon appears and approximately how much
is the “overshoot” there?

d. (7 pt) Compute the coefficients of the Fourier sine series for f(x).

Solution

a. The function f is bounded in [0, π], therefore

‖f‖2 =

∫ π

0
f(x)2 dx < +∞.

This means that the Fourier sine series converges in the L2 sense.

b. The pointwise limit of the Fourier sine series can be deduced from the odd-periodic exten-
sion fext(x) of f(x) from [0, π] to R. This is constructed by first considering the extension
of f to an odd function defined in [−π, π] and then the further periodic extension to R.
This extension fext(x) is discontinuous at x = (2k+1)π, k ∈ Z and fext((2k+1)π+) = −π
while fext((2k+ 1)π−) = π. Therefore the Fourier sine series converges pointwise at x = π
and x = −π to 1

2 [−π + π] = 0. At x ∈ (−π, π), fext(x) is continuous (and equal to x) so
the Fourier series converges pointwise to x.

c. The odd-periodic extension fext of f is discontinuous at x = (2k + 1)π, k ∈ Z so the
only point in [0, π] where fext is discontinuous is x = π. The jump of fext at x = π is
fodd(π+) − fodd(π−) = −2π. Therefore, for x ∈ [0, π] the Gibbs phenomenon appears at
x = π and the overshoot is approximately 0.09 · (2π) ' 0.56.

d. We have

An =
2

π

∫ π

0
x sin(nx) dx =

2

π

∫ π

0
x

(
− 1

n
cos(nx)

)′
dx.

Integration by parts gives

An = − 2

nπ

[
x cos(nx)

]π
0

+
2

nπ

∫ π

0
cos(nx) dx = − 2

nπ

[
x cos(nx)− sin(nx)

n

]π
0

.

Then

An = −(−1)n
2

n
.
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Question 6 (15 points)

Consider the diffusion equation ut = uxx in {0 < x < 1, 0 < t < ∞} with u(0, t) = u(1, t) = 0
and u(x, 0) = 4x(1− x).

a. (5 pt) Show that 0 < u(x, t) < 1 for all t > 0 and 0 < x < 1.

b. (4 pt) Define the energy function E(t) =
∫ 1
0 u(x, t)2 dx and show that E(t) is a decreasing

function of t, that is, dE/dt ≤ 0.

c. (6 pt) Show that u(x, t) = u(1− x, t) for all t ≥ 0 and 0 ≤ x ≤ 1.
[Hint: define w(x, t) = u(x, t)− u(1− x, t)]

Solution

a. The strong maximum principle (as stated in the book) says that the solution u of the
diffusion equation in a rectangle R = [0, 1] × [0, T ] where T > 0 attains its maximum
only at the part of the boundary given by B = {x = 0 or x = 1 or t = 0} (unless the
solution is constant). Given that the solution is not constant (since u(x, 0) = 4x(1 − x))
we conclude that for any (x, t) ∈ int(R) we have

min
(x,t)∈B

u(x, t) < u(x, t) < max
(x,t)∈B

u(x, t).

But for any T > 0 we have max(x,t)∈B u(x, t) = 1 and min(x,t)∈B u(x, t) = 0. Therefore,

0 < u(x, t) < 1

for any 0 < x < 1 and t > 0.

b. We compute

dE

dt
=

∫ 1

0

∂

∂t
(u2) dx = 2

∫ 1

0
uut dx.

Using the diffusion equation we rewrite the last expression as

dE

dt
= 2

∫ 1

0
uuxx dx,

and using integration by parts we get

dE

dt
= 2[(uux)|x=1 − (uux)|x=0]− 2

∫ 1

0
(ux)2 dx.

Since u(0, t) = u(1, t) = 0 we have

dE

dt
= −2

∫ 1

0
(ux)2 dx ≤ 0.

c. Define w(x, t) = u(x, t)− u(1− x, t). Then

wt(x, t) = ut(x, t)− u(1− x, t),

wx(x, t) = ux(x, t) + ux(1− x, t),

and

wxx(x, t) = uxx(x, t)− uxx(1− x, t) = ut(x, t)− ut(1− x, t),
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where we used that u is a solution of the diffusion equation ut = uxx. Therefore

wt = wxx.

Furthermore,

w(0, t) = u(0, t)− u(1, t) = 0, w(1, t) = u(1, t)− u(0, t) = 0,

and

w(x, 0) = u(x, 0)− u(1− x, 0) = 4x(1− x)− 4(1− x)(1− (1− x)) = 0.

Therefore, w satisfies the diffusion equation while it is zero at the boundary. This means
that w = 0 for all 0 ≤ x ≤ 1 and t ≥ 0. To be more explicit one can say that w = 0 is an
obvious solution and then use uniqueness, or use the maximum principle to obtain that
the maximum of w in the domain is 0 and the minimum is also 0 so w = 0 everywhere in
the domain. This means that u(x, t) = u(1− x, t) for all t ≥ 0 and 0 ≤ x ≤ 1.
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